Source code for mygrad.linalg.funcs

from numbers import Real
from typing import Optional, Sequence, Tuple, Union

import numpy as np
from numpy.core.einsumfunc import _parse_einsum_input

from mygrad.math.misc.funcs import absolute
from mygrad.math.sequential.funcs import max as mg_max, min as mg_min
from mygrad.tensor_base import Tensor, implements_numpy_override
from mygrad.typing import ArrayLike

from .ops import EinSum, Norm

__all__ = ["einsum", "norm"]


[docs]@implements_numpy_override(np.linalg.norm) def norm( x: ArrayLike, ord: Optional[Union[int, float]] = None, axis: Optional[Union[int, Tuple[int]]] = None, keepdims: bool = False, *, nan_to_num: bool = True, constant: Optional[bool] = None, ) -> Tensor: r"""Vector norm. This function is an infinite number of vector norms (described below), depending on the value of the ``ord`` parameter. In contrast to ``numpy.linalg.norm``, matrix norms are not supported. This docstring was adapted from that of ``numpy.linalg.norm`` [1]_. Parameters ---------- x : ArrayLike Input tensor. If `axis` is None, then `x` must be 1-D unless `ord` is None. If both `axis` and `ord` are None, the 2-norm of ``x.ravel`` will be returned. ord : Optional[Union[int, float]] Order of the norm (see table under ``Notes``). inf means numpy's `inf` object. The default is None. axis : Optional[Union[int, Tuple[int]]] If `axis` is an integer, it specifies the axis of `x` along which to compute the vector norms. The default is None. keepdims : bool, optional (default=False) If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original `x`. nan_to_num : bool, optional (default=True) If `True` then gradients that would store nans due to the presence of zeros in `x` will instead store zeros in those places. constant : Optional[bool] If ``True``, this tensor is treated as a constant, and thus does not facilitate back propagation (i.e. ``constant.grad`` will always return ``None``). Defaults to ``False`` for float-type data. Defaults to ``True`` for integer-type data. Integer-type tensors must be constant. Returns ------- Tensor Norm(s) of the vector(s). Notes ----- For values of ``ord < 1``, the result is, strictly speaking, not a mathematical 'norm', but it may still be useful for various numerical purposes. The following norms can be calculated: ===== ========================== ord norm for vectors ===== ========================== inf max(abs(x)) -inf min(abs(x)) 0 sum(x != 0) 1 as below -1 as below 2 as below -2 as below other sum(abs(x)**ord)**(1./ord) ===== ========================== The Frobenius norm is given by [1]_: :math:`||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2}` The nuclear norm is the sum of the singular values. Both the Frobenius and nuclear norm orders are only defined for matrices and raise a ValueError when ``x.ndim != 2``. References ---------- .. [1] Retrieved from: https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html .. [2] G. H. Golub and C. F. Van Loan, *Matrix Computations*, Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15 Examples -------- >>> import mygrad as mg >>> x = mg.tensor([[1.0, 2.0, 3.0], ... [1.0, 0.0, 0.0]]) >>> l2_norms = mg.linalg.norm(x, axis=1, ord=2) >>> l2_norms Tensor([3.74165739, 1. ]) The presence of the elementwise absolute values in the norm operation means that zero-valued entries in any of input vectors have an undefined derivative. When `nan_to_num=False` is specified these derivatives will be reported as `nan`, otherwise they will be made to be 0.0. >>> l2_norms = mg.linalg.norm(x, axis=1, ord=2, nan_to_num=True) >>> l2_norms.backward() >>> x.grad array([[0.26726124, 0.53452248, 0.80178373], [1. , nan, nan]]) This is rigorously true, but is often not the desired behavior in autodiff applications. Rather, it can be preferable to use `0.0` to fill these undefined derivatives. This is the default behavior, when `nan_to_num` is not specified. >>> l2_norms = mg.linalg.norm(x, axis=1, ord=2, nan_to_num=False) # default setting: `nan_to_num=False` >>> l2_norms.backward() >>> x.grad array([[0.26726124, 0.53452248, 0.80178373], [1. , 0., 0.]]) L1 norms along each of the three columns: >>> mg.linalg.norm(x, axis=0, ord=1) Tensor([2., 2., 3.]) """ if isinstance(ord, Real) and np.isinf(ord): op = mg_max if ord > 0 else mg_min abs_ = absolute(x, constant=constant) out = op(abs_, axis=axis, keepdims=keepdims) in_ndim = abs_.creator.variables[0].ndim if (axis is None and ord is not None and in_ndim == 2) or ( hasattr(axis, "__len__") and len(axis) > 1 ): raise NotImplementedError( "mygrad.linalg.norm does not support matrix norms" ) return out return Tensor._op( Norm, x, op_kwargs={ "axis": axis, "keepdims": keepdims, "ord": ord, "nan_to_num": nan_to_num, }, constant=constant, )
[docs]@implements_numpy_override() def einsum( *operands: Union[ArrayLike, str, Sequence[int]], optimize: bool = False, out: Optional[Union[np.ndarray, Tensor]] = None, constant: Optional[bool] = None, ) -> Tensor: r""" einsum(subscripts, *operands) Evaluates the Einstein summation convention on the operands. This implementation exactly mirrors that of ``numpy.einsum`` and supports back-propagation through all variety of tensor-products, sums, traces, and views that it can perform. The following docstring was adapted from the documentation for ``numpy.einsum`` Using the Einstein summation convention, many common multi-dimensional array operations can be represented in a simple fashion. This function provides a way to compute such summations. The best way to understand this function is to try the examples below, which show how many common NumPy/MyGrad functions can be implemented as calls to ``einsum``. Back-propagation via ``einsum`` is optimized such that any tensor that occurs redundantly within the summation will only have its gradient computed once. This optimization accommodates all number and combination of redundancies that can be encountered. E.g. back-propping through ``einsum('...,...->', x, x)`` will only incur a single computation/accumulation for ``x.grad`` rather than two. This permits users to leverage the efficiency of sum-reduction, where ``(x ** 2).sum()`` is sub-optimal, without being penalized during back-propagation. Parameters ---------- subscripts : str Specifies the subscripts for summation. operands : array_like The tensors used in the summation. optimize : {False, True, 'greedy', 'optimal'}, optional (default=False) Controls if intermediate optimization should occur; also enables the use of BLAS where possible. This can produce significant speedups for computations like matrix multiplication. No optimization will occur if False and True will default to the 'greedy' algorithm. Also accepts an explicit contraction list from the ``np.einsum_path`` function. See ``np.einsum_path`` for more details. constant : Optional[bool] If ``True``, this tensor is treated as a constant, and thus does not facilitate back propagation (i.e. ``constant.grad`` will always return ``None``). Defaults to ``False`` for float-type data. Defaults to ``True`` for integer-type data. Integer-type tensors must be constant. Returns ------- output : mygrad.Tensor The calculation based on the Einstein summation convention. Notes ----- The subscripts string is a comma-separated list of subscript labels, where each label refers to a dimension of the corresponding operand. Repeated subscripts labels in one operand take the diagonal. For example, ``einsum('ii', a)`` is equivalent to ``np.trace(a)`` (however, the former supports back-propagation). Whenever a label is repeated, it is summed, so ``einsum('i, i', a, b)`` is equivalent to ``np.inner(a, b)``. If a label appears only once, it is not summed, so ``einsum('i', a)`` produces a view of ``a`` with no changes. The order of labels in the output is by default alphabetical. This means that ``np.einsum('ij', a)`` doesn't affect a 2D tensor, while ``einsum('ji', a)`` takes its transpose. The output can be controlled by specifying output subscript labels as well. This specifies the label order, and allows summing to be disallowed or forced when desired. The call ``einsum('i->', a)`` is like ``np.sum(a, axis=-1)``, and ``einsum('ii->i', a)`` is like ``np.diag(a)``. The difference is that `einsum` does not allow broadcasting by default. To enable and control broadcasting, use an ellipsis. Default NumPy-style broadcasting is done by adding an ellipsis to the left of each term, like ``einsum('...ii->...i', a)``. To take the trace along the first and last axes, you can do ``einsum('i...i', a)``, or to do a matrix-matrix product with the left-most indices instead of rightmost, you can do ``einsum('ij...,jk...->ik...', a, b)``. When there is only one operand, no axes are summed, and no output parameter is provided, a view into the operand is returned instead of a new tensor. Thus, taking the diagonal as ``einsum('ii->i', a)`` produces a view. An alternative way to provide the subscripts and operands is as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``. The examples below have corresponding `einsum` calls with the two parameter methods. Examples -------- >>> import mygrad as mg >>> import numpy as np >>> a = mg.arange(25).reshape(5,5) >>> b = mg.arange(5) >>> c = mg.arange(6).reshape(2,3) Compute the trace of ``a``, :math:`\sum_{i}{A_{ii}} = f`: >>> einsum('ii', a) Tensor(60) >>> einsum(a, [0, 0]) Tensor(60) >>> np.trace(a.data) array(60) Return a view along the diagonal of ``a``, :math:`A_{ii} = F_{i}`: >>> einsum('ii->i', a) Tensor([ 0, 6, 12, 18, 24]) >>> einsum(a, [0,0], [0]) Tensor([ 0, 6, 12, 18, 24]) >>> np.diag(a.data) array([ 0, 6, 12, 18, 24]) Compute the matrix-vector product of ``a`` with ``b``, :math:`\sum_{j}{A_{ij} B_{j}} = F_{i}`: >>> einsum('ij,j', a, b) Tensor([ 30, 80, 130, 180, 230]) >>> einsum(a, [0,1], b, [1]) Tensor([ 30, 80, 130, 180, 230]) >>> mg.matmul(a, b) Tensor([ 30, 80, 130, 180, 230]) >>> einsum('...j,j', a, b) Tensor([ 30, 80, 130, 180, 230]) Take the transpose of ``c``, :math:`C_{ji} = F_{ij}`: >>> einsum('ji', c) Tensor([[0, 3], [1, 4], [2, 5]]) >>> einsum(c, [1, 0]) Tensor([[0, 3], [1, 4], [2, 5]]) >>> c.T Tensor([[0, 3], [1, 4], [2, 5]]) Compute ``3 * c``: >>> einsum('..., ...', 3, c) Tensor([[ 0, 3, 6], [ 9, 12, 15]]) >>> einsum(',ij', 3, c) Tensor([[ 0, 3, 6], [ 9, 12, 15]]) >>> einsum(3, [Ellipsis], c, [Ellipsis]) Tensor([[ 0, 3, 6], [ 9, 12, 15]]) >>> 3 * c Tensor([[ 0, 3, 6], [ 9, 12, 15]]) Compute the inner product of ``b`` with itself, :math:`\sum_{i}{B_{i} B_{i}} = f`: >>> einsum('i,i', b, b) Tensor(30) >>> einsum(b, [0], b, [0]) Tensor(30) >>> np.inner(b.data, b.data) 30 Compute the outer product of ``array([1, 2])`` with ``b``, :math:`A_{i}B_{j} = F_{ij}`: >>> einsum('i,j', np.arange(2)+1, b) Tensor([[0, 1, 2, 3, 4], [0, 2, 4, 6, 8]]) >>> einsum(np.arange(2)+1, [0], b, [1]) Tensor([[0, 1, 2, 3, 4], [0, 2, 4, 6, 8]]) >>> np.outer(np.arange(2)+1, b) array([[0, 1, 2, 3, 4], [0, 2, 4, 6, 8]]) >>> einsum('i...->...', a) Tensor([50, 55, 60, 65, 70]) >>> einsum(a, [0,Ellipsis], [Ellipsis]) Tensor([50, 55, 60, 65, 70]) >>> np.sum(a, axis=0) array([50, 55, 60, 65, 70]) Compute the tensor product :math:`\sum_{ij}{A_{ijk} B_{jil}} = F_{kl}` >>> a = mg.arange(60.).reshape(3,4,5) >>> b = mg.arange(24.).reshape(4,3,2) >>> einsum('ijk,jil->kl', a, b) Tensor([[ 4400., 4730.], [ 4532., 4874.], [ 4664., 5018.], [ 4796., 5162.], [ 4928., 5306.]]) >>> einsum(a, [0,1,2], b, [1,0,3], [2,3]) Tensor([[ 4400., 4730.], [ 4532., 4874.], [ 4664., 5018.], [ 4796., 5162.], [ 4928., 5306.]]) >>> np.tensordot(a,b, axes=([1,0],[0,1])) array([[ 4400., 4730.], [ 4532., 4874.], [ 4664., 5018.], [ 4796., 5162.], [ 4928., 5306.]]) Matrix multiply ``a.T`` with ``b.T``, :math:`\sum_{k}{A_{ki} B_{jk}} = F_{ij}` >>> a = mg.arange(6).reshape((3,2)) >>> b = mg.arange(12).reshape((4,3)) >>> einsum('ki,jk->ij', a, b) Tensor([[10, 28, 46, 64], [13, 40, 67, 94]]) >>> einsum('ki,...k->i...', a, b) Tensor([[10, 28, 46, 64], [13, 40, 67, 94]]) >>> einsum('k...,jk', a, b) Tensor([[10, 28, 46, 64], [13, 40, 67, 94]]) Make an assignment to a view along the diagonal of ``a``: >>> a = mg.zeros((3, 3)) >>> einsum('ii->i', a).data[:] = 1 >>> a Tensor([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) """ # TODO: normalize error handling for invalid inputs operands = list(operands) if isinstance(operands[0], str): # operands form: "ijk, ijk", x, y variables = operands[1:] if any(isinstance(i, Tensor) for i in operands): operands[1:] = ( var.data if isinstance(var, Tensor) else var for var in operands[1:] ) else: # operands form: op0, sublist0, op1, sublist1, ..., [sublistout] end = -1 if len(operands) % 2 else None # -1 if sublistout is included variables = operands[:end:2] if any(isinstance(i, Tensor) for i in operands): operands[:end:2] = ( var.data if isinstance(var, Tensor) else var for var in operands[:end:2] ) in_lbls, out_lbls, _ = _parse_einsum_input(operands) # einsum doesn't handle out=None properly in numpy 1.17 return Tensor._op( EinSum, *variables, op_kwargs=dict(in_lbls=in_lbls, out_lbls=out_lbls, optimize=optimize), constant=constant, out=out, )